Worksheet \# 9: The Derivative, Velocities, and Tangent Lines

1. Comprehension check:
(a) What is the definition of the derivative $f^{\prime}(a)$ at a point a ?
(b) What is the geometric meaning of the derivative $f^{\prime}(a)$ at a point a ?
(c) True or false: If $f(1)=g(1)$, then $f^{\prime}(1)=g^{\prime}(1)$.
(d) True or false: If $f^{\prime}(1)=g^{\prime}(1)$, then $f(1)=g(1)$.
2. Part of Problem \#1 on Worksheet \#4 is given below. Rewrite each of these questions as a problem about the graph of $h(t)$, secant lines to the graph of $h(t)$, and/or tangent lines to the graph of $h(t)$.
A ball is thrown vertically into the air from ground level with an initial velocity of $15 \mathrm{~m} / \mathrm{s}$. Its height at time t is $h(t)=15 t-4.9 t^{2}$.
(a) How far does the ball travel during the time interval $[1,3]$?
(b) Compute the ball's average velocity over the time interval $[1,3]$.
(c) Compute the ball's average velocity over the time intervals $[1,1.01],[1,1.001],[0.99,1]$, and $[0.999,1]$.
(d) Estimate the instantaneous velocity when $t=1$.
3. (a) Find a function f and a number a so that the following limit represents a derivative $f^{\prime}(a)$.

$$
\lim _{h \rightarrow 0} \frac{(4+h)^{3}-64}{h}
$$

(b) Draw the graph of your function f from part (a) and the secant line whose slope is given by $\frac{(4+h)^{3}-64}{h}$.
(c) Create a real-world scenario that is modeled by f, and write a problem about this scenario for which the answer is given by $\lim _{h \rightarrow 0} \frac{(4+h)^{3}-64}{h}$.
4. Let $f(x)=|x|$. Find $f^{\prime}(1), f^{\prime}(0)$ and $f^{\prime}(-1)$ or explain why the derivative does not exist.
5. The point $P=(3,1)$ lies on the curve $y=\sqrt{x-2}$.
(a) If Q is the point $(x, \sqrt{x-2})$, find a formula for the slope of the secant line $P Q$.
(b) Using your formula from part (a) and a calculator, find the slope of the secant line $P Q$ for the following values of x (do not round until you get to the final answer):

$$
2.9,2.99,2.999,3.001,3.01, \text { and } 3.1
$$

Tip: You can use you calculator by entering the formula under " $\mathrm{y}=$ " and then using "Table".
(c) Using the results of part (b), guess the value of the slope of the tangent line to the curve at $P=(3,1)$.
(d) Verify that your guess is correct by computing an appropriate derivative.
(e) Using the slope from part (d), find the equation of the tangent line to the curve at $P=(3,1)$.
6. Let

$$
g(t)= \begin{cases}a t^{2}+b t+c & \text { if } t \leq 0 \\ t^{2}+1 & \text { if } t>0\end{cases}
$$

Find all values of a, b, and c so that g is differentiable at $t=0$.
7. Let $f(x)=e^{x}$.
(a) Estimate the derivative $f^{\prime}(0)$ by considering difference quotients $\frac{f(h)-f(0)}{h}$ for small values of h.
(b) Compute the derivative $f^{\prime}(0)$ exactly by finding $\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}$.
8. Suppose that $f^{\prime}(0)$ exists. Does the limit

$$
\lim _{h \rightarrow 0} \frac{f(h)-f(-h)}{h}
$$

exist? Can you express the limit in terms of $f^{\prime}(0)$?
9. Find A and B so that the limit

$$
\lim _{x \rightarrow 1} \frac{x^{2}+2 x-(A x+B)}{(x-2)^{2}}
$$

is finite. Give the value of the limit.
10. Find the specified derivative for each of the following using the limit definition of derivative.
(a) If $f(x)=1 / x$, find $f^{\prime}(2)$.
(b) If $g(x)=\sqrt{x}$, find $g^{\prime}(2)$.
(c) If $h(x)=x^{2}$, find $h^{\prime}(s)$.
(d) If $f(x)=x^{3}$, find $f^{\prime}(-2)$.
(e) If $g(x)=1 /(2-x)$, find $g^{\prime}(t)$.

Supplemental Worksheet \#9: Derivatives

1. Consider the constant function $f(x)=c$. Using the limit laws, prove that $f^{\prime}(x)=0$.
2. Given a differentiable function $f(x)$, define $F(x)=c \cdot f(x)$ for some real number c. Use the limit laws to show $F^{\prime}(x)=c \cdot f^{\prime}(x)$.
3. Define $F(x)=g(x)+h(x)$, where g and h are differentiable functions. Using the limit laws, show that $F^{\prime}(x)=g^{\prime}(x)+h^{\prime}(x)$.
4. Use the previous three problems to find the derivative of $f(x)=4 x^{2}-10 x+2$ by decomposing this function into smaller pieces.
5. Find $g(2)$ and $g^{\prime}(2)$ assuming the equation of the tangent line to $g(x)$ at $x=3$ is given by $y=-10 x+20$.
6. Find a so that the tangent line to $f(x)=x^{2}$ at $x=a$ is perpendicular to the line $y=7 x+3$.
7. The following limit gives the derivative for some function $f(x)$ at some value $x=a$. Find $f(x)$ and a :

$$
\lim _{h \rightarrow 0} \frac{5^{2+h}+(2+h)^{2}-29}{h}
$$

Find another function g and point b that will have the same derivative as above.
8. Suppose the function $f(x)=\frac{c^{2}}{x}$.
(a) Use the definition of the derivative to find $f^{\prime}(a)$ for a general point $x=a$ on the curve.
(b) Use your result to find the equation of the tangent line at the point ($a, f(a)$).
(c) Show that the area of the right triangle bounded by the tangent line, the x-axis, and the y-axis is always $2 c^{2}$, no matter the value of a.
9. Let $f(x)=\sin (x)$. Use the definition of derivative to find $f^{\prime}(a)$ for a general point $x=a$. Hint: you will need the facts that:

$$
\begin{gathered}
\sin (a+b)=\sin (a) \cos (b)+\sin (b) \cos (a) \\
\lim _{h \rightarrow 0} \frac{\sin (h)}{h}=1 \\
\lim _{h \rightarrow 0} \frac{\cos (h)-1}{h}=0
\end{gathered}
$$

